rm(list=ls()) # clear the entire workspace
library(xts) # load the required library
library(zoo) # load the required library
library(Rcpp) # load the required library
library(inline) # load the required library
library(compiler) # load the required library
# load the "indicator" file
data <- read.csv(file="sind",head=FALSE,sep=,)
tick_size <- 0.025
tick_value <- 12.50
# extract other vectors of interest
#open <- data[,2]
market_mode <- data[,228]
kalman <- data[,283]
# source the Rcpp inline file for the C++ code for the test in question
# this file effectively creates a function that takes input and gives test
# output in the desired form e.g. equity curve, position vector etc. for
# further statistical tests in the R environment, e.g the ttrTests package.
source("basic_market_mode_equity.r")
results <- basic_market_mode_equity(data[,2],market_mode,kalman,tick_size,tick_value)
This is "normal" R code which- loads the required libraries
- loads the required file(s) from disk and takes other inputs for the test in question
- extracts the required information from the loaded file(s)
- sources and then calls the test function, named "basic_market_mode_equity"
# This function takes as inputs vectors of opening prices, the "market mode,"
# the kalman filter of vwap, and single values for tick size and tick value.
# The values of "market_mode" are as follows:-
# 0 = cyclic
# 1 = up with retracement
# 2 = up with no retracement
# 3 = down with retracement
# 4 = down with no retracement
#
# This first test is very simple - be long when market mode is 1 or 2,
# short when 3 or 4, and when 0 be long or short depending on the direction
# of the kalman filter. This test is just practice in coding using Rcpp:-
# don't expect any meaningful results. Equity curves for each market mode
# are the function outputs
src <- '
Rcpp::NumericVector open(a) ;
Rcpp::NumericVector market_mode(b) ;
Rcpp::NumericVector kalman(c) ;
Rcpp::NumericVector tick_size(d) ;
Rcpp::NumericVector tick_value(e) ;
int n = open.size() ;
Rcpp::NumericVector cyc(n) ; // create output vector
Rcpp::NumericVector uwr(n) ; // create output vector
Rcpp::NumericVector unr(n) ; // create output vector
Rcpp::NumericVector dwr(n) ; // create output vector
Rcpp::NumericVector dnr(n) ; // create output vector
// fill the equity_curve with zeros for "burn in" period
for ( int ii = 0 ; ii < 100 ; ii++ ) {
cyc[ii] = 0.0 ;
uwr[ii] = 0.0 ;
unr[ii] = 0.0 ;
dwr[ii] = 0.0 ;
dnr[ii] = 0.0 ; }
for ( int ii = 100 ; ii < n ; ii++ ) {
// uwr market type
if ( market_mode[ii-2] == 1 ) {
cyc[ii] = cyc[ii-1] ;
uwr[ii] = uwr[ii-1] + tick_value[0] * ( (open[ii]-open[ii-1])/tick_size[0] ) ;
unr[ii] = unr[ii-1] ;
dwr[ii] = dwr[ii-1] ;
dnr[ii] = dnr[ii-1] ; }
// unr market type
if ( market_mode[ii-2] == 2 ) {
cyc[ii] = cyc[ii-1] ;
uwr[ii] = uwr[ii-1] ;
unr[ii] = unr[ii-1] + tick_value[0] * ( (open[ii]-open[ii-1])/tick_size[0] ) ;
dwr[ii] = dwr[ii-1] ;
dnr[ii] = dnr[ii-1] ; }
// dwr
if ( market_mode[ii-2] == 3 ) {
cyc[ii] = cyc[ii-1] ;
uwr[ii] = uwr[ii-1] ;
unr[ii] = unr[ii-1] ;
dwr[ii] = dwr[ii-1] + tick_value[0] * ( (open[ii-1]-open[ii])/tick_size[0] ) ;
dnr[ii] = dnr[ii-1] ; }
// dnr
if ( market_mode[ii-2] == 4 ) {
cyc[ii] = cyc[ii-1] ;
uwr[ii] = uwr[ii-1] ;
unr[ii] = unr[ii-1] ;
dwr[ii] = dwr[ii-1] ;
dnr[ii] = dnr[ii-1] + tick_value[0] * ( (open[ii-1]-open[ii])/tick_size[0] ) ; }
// cyc long
if ( market_mode[ii-2] == 0 && kalman[ii-2] > kalman[ii-3] ) {
cyc[ii] = cyc[ii-1] + tick_value[0] * ( (open[ii]-open[ii-1])/tick_size[0] ) ;
uwr[ii] = uwr[ii-1] ;
unr[ii] = unr[ii-1] ;
dwr[ii] = dwr[ii-1] ;
dnr[ii] = dnr[ii-1] ; }
// cyc short
if ( market_mode[ii-2] == 0 && kalman[ii-2] < kalman[ii-3] ) {
cyc[ii] = cyc[ii-1] + tick_value[0] * ( (open[ii-1]-open[ii])/tick_size[0] ) ;
uwr[ii] = uwr[ii-1] ;
unr[ii] = unr[ii-1] ;
dwr[ii] = dwr[ii-1] ;
dnr[ii] = dnr[ii-1] ; }
} // end of main for loop
return List::create(
_["cyc"] = cyc ,
_["uwr"] = uwr ,
_["unr"] = unr ,
_["dwr"] = dwr ,
_["dnr"] = dnr ) ; '
basic_market_mode_equity <- cxxfunction(signature(a = "numeric", b = "numeric", c = "numeric",
d = "numeric", e = "numeric"), body=src,
plugin = "Rcpp")
which basically just outputs five equity curves corresponding to the identified market mode (see the comments in the code for more details).This final code block is again "normal" R code
# coerce the above results list object to a data frame object
results_df <- data.frame( results )
df_max <- max(results_df) # for scaling of results plot
df_min <- min(results_df) # for scaling of results plot
# and now create an xts object for plotting
results_xts <- xts(results_df,as.Date(data[,'V1']))
# a nice plot of the results_xts object
plot(results_xts[,'cyc'],ylim=c(df_min,df_max),type="l")
par(new=TRUE,col="cyan")
plot(results_xts[,'uwr'],ylim=c(df_min,df_max),type="l")
par(new=TRUE,col="blue")
plot(results_xts[,'unr'],ylim=c(df_min,df_max),type="l")
par(new=TRUE,col="green")
plot(results_xts[,'dwr'],ylim=c(df_min,df_max),type="l")
par(new=TRUE,col="red")
plot(results_xts[,'dnr'],ylim=c(df_min,df_max),type="l")
which produces this typical plot output.This test is just a toy test and the results are not really important. The important thing is that I can now easily import the output of my Octave .oct C++ functions into R and conduct a whole range of tests utilising R packages from CRAN or simply write my own test routines in C++ (my intention) to run in R and not have to struggle with vectorising code for speed optimisation purposes.